

General Dimensions (with basic boom) \boxtimes Unit: mm

Crane

Max．Lifting capacity \times working radius		120 metric tons $\times 5.0 \mathrm{~m}$
Max．boom length		75 m
Max．boom length，（main＋jib）		88m（63m boom＋25m jib）
Rope speed	Main drum hoist／lowering	＊100～50／50～25 m／min
	Aux．drum hoist／lowering	＊100～50／50～25 m／min
	Boom drum hoist／lowering	＊60～30 m／min
Part line	Hook block capacity x Part line	120ton $\times 10$
	Hook block capacity x Part line	11ton x 1
	Boom drum hoist／lowering part line	14
Counterweight		50ton
Total operating weight（with 18m boom）		121．5ton（Approx．）
Average ground bearing pressure		$0.92 \mathrm{kgf} / \mathrm{cm}^{2}$

■Combination of Boom and Jib（O：Available combination）

Jib length （m）	Boom length（m）																
	18－24	2730	33	36	39	42	45	48	51	54	57	60	63	66	69	72	75
Auxiliary	》○区	－	入	\bigcirc	D	\bigcirc		\bigcirc			O	7		7		O	
13	$\boxtimes \boxtimes$	\			＋	∇	）	8									
19	இ \boxtimes	\			－		－										
25	® \boxtimes	\															

Wire rope

Place of use	Rope diameter（mm）	Guaranteed strength（ton）	Rope type	
Load hoist	\bigotimes	$\phi 26$	61.0	A
Boom hoist	\boxtimes	$\phi 22$	36.3	B
Boom suspension	\bigotimes	$\phi 31.5$	74.9	C
Jib load hoist	\boxtimes	$\phi 26$	61.0	A
Jib Boom suspension \boxtimes	$\phi 28$	59.3	C	
Jib strut suspension \boxtimes	$\phi 28$	59.3	C	

Rope type A．PS（19）＋39 xp．7
B：IWRC $6 \times$ WS（31）

Boom \＆Jib combination

```
Basic 18m Boom \(\underset{7.5 — 120.5}{ }\)
```



```
    Basic 13 m Jib \(\underset{6.5 \ldots{ }_{6.5}}{ }\)
    19m Jib \(\widehat{6.5}\)\begin{tabular}{l} 
I \\
\hline
\end{tabular}
```



```
    27 m Boom \begin{tabular}{l|l|l|l}
7.5 & \(|3|\) & 6 & \\
\hline
\end{tabular}
    30m Boom \begin{tabular}{l|l|l|l|l}
\hline 7.5 & \(|3| 3 \mid\) & 6 & \\
\hline
\end{tabular}
    33m Boom \begin{tabular}{l|l|l|l|l|l|}
\hline 7.5 & 3 & 3 & 9 & \\
\hline
\end{tabular}
    36m Boom \begin{tabular}{l|l|l|l|l}
7.5 & \({ }_{3}\) & 6 & 9 & \\
\hline
\end{tabular}
    39m Boom \begin{tabular}{l|l|l|l|l|l}
\hline 7.5 & \(3^{2}\) & 3 & 6 & 9 & \\
\hline
\end{tabular}
    42 m Boom \begin{tabular}{l|l|l|l|l|l}
\hline 7.5 & \hline & 3 & 9 & 9 & 10.5 \\
\hline
\end{tabular}
    45m Boom \begin{tabular}{l|l|l|l|l|l}
\hline 7.5 & 3 & 6 & 9 & 9 & \\
\hline
\end{tabular}
```

Basic 18m Boom $\begin{aligned} & 7.5 — 1-10.5\end{aligned}$

25 m Jib $\underset{6.5}{ }$| |
| :---: |

```
27m Boom \begin{tabular}{l|l|l|l}
7.5 & \hline & 6 & 6 \\
\hline
\end{tabular}
```



```
36m Boom \begin{tabular}{l|l|l|l|l}
7.5 & \({ }_{3}\) & 6 & 9 & \\
\hline
\end{tabular}
39 m Boom \begin{tabular}{l|l|l|l|l|l}
\hline 7.5 & \hline & 3 & 6 & 9 & \\
\hline
\end{tabular}
42 m Boom \begin{tabular}{l|l|l|l|l|l}
\hline 7.5 & \({ }^{3}\) & 3 & 9 & 9 & 9
\end{tabular}
45m Boom \begin{tabular}{l|l|l|l|l|l}
\hline 7.5 & 3 & 6 & 9 & 9 & \\
\hline 10.5
\end{tabular}
```

Working range（No load condition）

$$
\begin{aligned}
& 69 \mathrm{~m} \text { Boom } \begin{array}{l|l|l|l|l|l|l|l|l}
7.5 & 9 & 9 & 9 & 3 & 3 & 9 & 9 & \\
\hline 10.5
\end{array} \\
& 72 \mathrm{~m} \text { Boom } \widehat{7.5} \begin{array}{l|l|l|l|l|l|l|l|l}
\\
\hline
\end{array} \\
& 75 \mathrm{~m} \text { Boom } \begin{array}{l|l|l|l|l|l|l|l|l|l}
7.5 & 9 & 9 & 9 & 3 & 3 & 6 & 9 & 9 & \\
\hline
\end{array} \\
& 48 \mathrm{~m} \text { Boom } \begin{array}{l|l|l|l|l|l|l}
\hline 7.5 & 3 & 3 & 6 & 9 & 9 & \\
\hline
\end{array} \\
& 51 \mathrm{~m} \text { Boom } \begin{array}{c|l|l|l|l|l|l}
7.5 & 3 & 3 & 9 & 9 & 9 & \\
\hline 10.5
\end{array} \\
& \text { 54m Boom } \begin{array}{l|l|l|l|l|l|l}
7.5 & 3 & 6 & 9 & 9 & 9 & \\
\hline 10.5
\end{array} \\
& 57 \mathrm{~m} \text { Boom } \begin{array}{l|l|l|l|l|l|l|l}
7.5 & 3 & 3 & 6 & 9 & 9 & 9 & \\
\hline
\end{array} \\
& 60 \mathrm{~m} \text { Boom } \begin{array}{l|l|l|l|l|l|l|l}
7.5 & 3 & 3 & 9 & 9 & 9 & 9 & \\
\hline
\end{array} \\
& 63 \mathrm{~m} \text { Boom } \begin{array}{r|l|l|l|l|l|l|l}
7.5 & 9 & 9 & 9 & 3 & 6 & 9 & \\
\hline
\end{array} \\
& 66 \mathrm{~m} \text { Boom } \begin{array}{c|c|c|c|c|c|c|c|c}
7.5 & 9 & 9 & 9 & 3 & 3 & 6 & 9 & 10.5
\end{array}
\end{aligned}
$$

$\begin{aligned} & \hline \text { Boom length }(\mathrm{m}) \\ & \text { Working radius }(\mathrm{m}) \end{aligned}$	18.0	21.0	24.0	27.0	30.0	33.0	36.0	39.0	42.0	45.0	48.0	51.0	54.0	57.0	60.0	63.0	66.0	69.0	72.0	75.0
5.0	120.0																			
5.5	106.7	90.0																		
6.0	97.0	90.0	80.0	70.0																
7.0	83.3	81.2	75.0	$\xrightarrow{7.2 \mathrm{~m} \times}$	${ }^{7.1 \mathrm{~m} \times} \mathrm{x} \times$	${ }^{7.6 \mathrm{~m} \times} \times$														
8.0	71.7	71.5	67.5	64.0	60.0	50.0	8.1 m x 50.0	${ }^{8.6 \mathrm{~m} \times \mathrm{x}} 4$												
9.0	60.6	60.0	59.7	57.5	54.1	${ }^{9.5 m \times} \times$	50.0	40.0	$9.2 \mathrm{~mm} \times$	${ }^{9.7 m \mathrm{~m}} \mathrm{x}$										
10.0	51.8	51.6	51.5	51.0	48.8	47.4	46.0	$11.3 \mathrm{~m} \times$ 40.0	$11.2 \mathrm{~m} \times$ 40.0	($\begin{gathered}11.0 \mathrm{~m} \times \\ 40.0\end{gathered}$		${ }_{\substack{10.7 m \times \\ 30.0}}$	$\begin{gathered} 11.2 \mathrm{~m} \times \mathrm{x} \\ \hline \end{gathered}$	$\begin{gathered} 11.8 \mathrm{~m} \times \mathrm{x} \\ 28.1 \end{gathered}$						
12.0	40.6	40.4	40.3	40.2	40.0	39.2	38.4	37.8	37.5	37.1	30.0	30.0	28.3	28.1	${ }^{12.3 \mathrm{~m} \times} \mathrm{C}$	$\begin{aligned} & 12.8 \mathrm{~m} \times \\ & 20.0 \\ & \hline \end{aligned}$	${ }_{\substack{13.3 \mathrm{~m} \times \\ 19.0}}$	$\begin{aligned} & \hline 13.8 \mathrm{~m} \times \mathrm{x} \\ & \hline \end{aligned}$		
14.0	32.9	32.7	32.6	32.5	32.3	32.2	32.1	31.9	31.8	31.7	$\underset{\substack{14.1 m \times \\ 30.0}}{ }$	30.0	28.3	28.1	20.0	20.0	19.0	16.0	${ }^{14.4 \mathrm{~m} \times} \times$	${ }^{14.9 \mathrm{~m} \times} \times$
16.0	27.6	27.4	27.3	27.2	27.0	26.9	26.8	26.6	26.5	26.4	26.3	26.2	25.1	24.9	20.0	$\begin{array}{r} 17.4 \mathrm{~m} \times x \\ 20.0 \\ \hline \end{array}$	19.0	16.0	14.5	13.0
18.0	${ }^{17.2 m \times} \times$	23.4	23.3	23.2	23.0	22.9	22.8	22.6	22.5	22.4	22.3	22.2	22.0	21.9	20.0	19.2	17.9	16.0	14.5	13.0
20.0		${ }_{\substack{19.7 m \\ 20.8}}$	20.2	20.1	19.9	19.8	19.7	19.5	19.4	19.3	19.2	19.1	18.9	18.8	18.2	17.5	16.7	15.2	13.6	11.6
22.0			17.8	17.7	17.5	17.4	17.3	17.1	17.0	16.9	16.8	16.7	16.5	16.4	16.3	15.8	15.3	14.2	12.6	10.4
24.0			${ }^{22.3 \mathrm{~m} \times} \times$	15.8	15.6	15.5	15.4	15.2	15.1	15.0	14.9	14.8	14.6	14.5	14.4	14.2	13.8	13.0	11.6	9.4
26.0				${ }^{24.9 \mathrm{~m} \times \mathrm{O}} \times$	13.9	13.8	13.7	13.5	13.4	13.3	13.2	13.1	12.9	12.8	12.7	12.5	12.3	11.9	10.5	8.4
28.0					${ }^{27.5 \mathrm{~m}} \times$	12.5	12.4	12.2	12.1	12.0	11.9	11.8	11.6	11.5	11.4	11.2	11.0	10.9	9.6	7.6
30.0						11.3	11.2	11.0	10.9	10.8	10.7	10.6	10.4	10.3	10.2	10.0	9.8	9.7	8.7	6.9
32.0							10.2	10.0	9.9	9.8	9.7	9.6	9.4	9.3	9.2	9.0	8.8	8.6	7.8	6.2
34.0							${ }_{9.9}^{32.7 m \times}$	9.1	9.0	8.9	8.8	8.7	8.5	8.4	8.3	8.1	7.9	7.6	7.1	5.5
36.0								${ }_{8}^{35.3 \mathrm{~m} \times}$	8.2	8.1	8.0	7.9	7.7	7.6	7.5	7.3	7.1	6.7	6.4	5.0
38.0									${ }^{37.9 \mathrm{~m} \times}$	7.4	7.3	7.2	7.0	6.9	6.8	6.6	6.4	5.9	5.7	4.4
40.0										6.8	6.7	6.6	6.4	6.3	6.2	6.0	5.8	5.2	5.0	3.9
42.0										${ }^{40.5 \mathrm{~m}} \mathrm{6} \times$	6.2	6.1	5.9	5.8	5.7	5.5	5.3	4.6	4.4	3.5
44.0											${ }_{5}^{43.19} 5$	5.6	5.4	5.3	5.2	5.0	4.8	4.2	3.9	3.0
46.0												${ }_{5}^{45.7 \mathrm{~m} \times}$	4.9	4.8	4.7	4.5	4.3	3.7	3.4	2.6
48.0													4.5	4.4	4.3	4.1	3.8	3.2	2.9	2.2
50.0													${ }_{4}^{48.3 \mathrm{~m} \times}$	4.0	3.9	3.7	3.4	2.8	2.4	
52.0														${ }_{30.9}^{50.9} \times$	3.6	3.4	2.9	2.4	2.0	
54.0															53.5m \times	3.1	25	20		

1. Above rated loads are based on firm level ground, within 78% of tipping load at any point 360° throughout and with front stability of 1.15 or more.
. Working radius is horizontal distance from center of rotation to a vertical line through the center of gravity The weight
load.
120ton capacity $\cdots 1.60$ ton 60 ton capacity $\cdots 1.15$ ton
50 ton capacity $\cdots 0.95$ ton 30 ton capacity $\cdots 0.75$ ton
11 ton capacity $\cdots 0.40$ ton
Jib boom can be fitted to main boom in the following combinations.

Jib length (m)	Auxiliary	13.0	19.0	25.0
Boom length (m)	$18.0 \sim 72.0$	$30.0 \sim 63.0$	$30.0 \sim 63.0$	$30.0 \sim 63.0$

When ib boom is fitted actual loads that can be lifted with main hook block should be reduced according to the above chart (the weights include that of the auxiliary hook block).

Jib length(m)	Auxiliary	13.0	19.0	25.0
Weight to be deducted(ton)	0.70	2.80	3.30	3.90

Jib suspension pendant rope
6. High "A" Frame should be extended before working.

The rated loads for the Auxiliary jib must be reduced 0.7 ton from same radius of rated lifting loads of the main boom which installed the jib. The rated loads for the 13 m jib~ 25 m jib are same as main boom's one which installed jib.(Ref Jib rated iffing loads)
Howevere do not exceed below limit

Jib length (m)	Auxiliary	13.0		19.0		25.0	
Jib offset angle	-	10°	30°	10°	30°	10°	30°
	11.0	11.0	8.5	10.0	6.5	6.5	4.5

8. The rated load for Jib when the main hook is installed must be reduced by the total weight of the main hook and jib hook.
9. Depending on the number of part lines, rated lifting load is limited as follows
$\begin{array}{ll}\text { 1Part line } \cdots \cdots \text { up to } & \text { 12ton } \\ \text { 3Part line } & \text { 2Part line } \cdot \cdots \cdots \text { up to } \\ \text { 36ton } & \text { 24ton } \\ \text { 4Part line } & \end{array}$
3Part line $\cdots \cdots$ up to 36 ton \quad 4Part line $\cdots \cdots$ up to 48 ton
$\begin{array}{ll}\text { 5Part line } \cdots \cdots \text { up to } & \text { 60ton } \\ \text { 7Part line } \cdots \cdots \text { up to } & \text { 84ton line }\end{array} \quad$ 8Part line $\cdots \cdots$ up to $\begin{aligned} & \text { 72ton } \\ & 96 t o n\end{aligned}$
9Part line $\cdots \cdots$ up to 108 ton 10Part line $\cdots \cdots$ up to 120 ton
10. Rated loads shown in bold lines are based on structural strength factors.

Boom hoist drum

Crane

Boom length (m) Working radius (m)	18.0	21.0	24.0	27.0	30.0	33.0	36.0	39.0	42.0	45.0	48.0	51.0	54.0	57.0	60.0	63.0	66.0	69.0	72.0
5.5	$\begin{gathered} 5.7 \mathrm{~m} \mathrm{x} \\ \hline 11.0 \\ \hline \end{gathered}$																		
6.0	11.0	$\begin{gathered} 6.2 \mathrm{~m} x \\ \hline 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 6.7 \mathrm{~m} \times x \\ & 11.0 \end{aligned}$																
7.0	11.0	11.0	11.0	$\begin{gathered} 7.2 \mathrm{~m} \times \\ 11.0 \end{gathered}$	$\begin{aligned} & 7.8 \mathrm{~m} \times \\ & 11.0 \end{aligned}$														
8.0	11.0	11.0	11.0	11.0	11.0	$\begin{gathered} 8.3 \mathrm{~m} \times \mathrm{x} \\ \hline 11.0 \end{gathered}$	$\begin{gathered} 8.8 \mathrm{~m} \mathrm{x} \\ \hline 11.0 \end{gathered}$												
9.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	$\begin{gathered} 9.3 \mathrm{~m} \times \\ \hline 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 9.8 \mathrm{~m} \times \\ & \hline 11.0 \\ & \hline \end{aligned}$										
10.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	$\begin{gathered} 10.4 \mathrm{~m} \times \\ 11.0 \\ \hline \end{gathered}$	$\begin{gathered} 10.9 \mathrm{~m} \times \\ 11.0 \\ \hline \end{gathered}$	$\begin{gathered} 11.4 \mathrm{~m} \mathrm{x} \\ 11.0 \\ \hline \end{gathered}$	$\begin{gathered} 11.9 \mathrm{~m} \times \\ 11.0 \\ \hline \end{gathered}$						
12.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	$\underset{11.0}{12.5 \mathrm{~m} \times}$	$\begin{gathered} 13.0 \mathrm{~m} \times \\ 11.0 \end{gathered}$	$\begin{array}{r} 13.5 \mathrm{~m} \times \\ 11.0 \end{array}$			
14.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	$\begin{gathered} 14.5 \mathrm{~m} \times \\ 11.0 \end{gathered}$	
16.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	${ }_{\substack{15.1 \mathrm{~m} \\ 11.0}}$
18.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
20.0	$\begin{gathered} 18.5 \mathrm{~m} \times \\ 11.0 \end{gathered}$	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
22.0		$\begin{gathered} 21.1 \mathrm{~m} x \\ 11.0 \end{gathered}$	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
24.0			${ }^{23.7 \mathrm{~m} \times \mathrm{x}}$	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	${ }_{11}^{23.8} \times$
26.0				11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	$\begin{gathered} 27.7 \mathrm{~m} x \\ 11.0 \end{gathered}$	$\begin{gathered} 27.6 \mathrm{~m} \mathrm{x} \\ 11.0 \\ \hline \end{gathered}$	$\begin{gathered} 27.4 \mathrm{~m} \times \\ 11.0 \\ \hline \end{gathered}$	$\begin{gathered} 27.1 \mathrm{~m} x \\ 11.0 \end{gathered}$	$\begin{gathered} 26.9 \mathrm{~m} \mathrm{x} \\ 11.0 \\ \hline \end{gathered}$	$\begin{gathered} 26.4 \mathrm{~m} \times \\ 11.0 \\ \hline \end{gathered}$	9.8
28.0				${ }_{1}^{26.3 \mathrm{~m} \times} \times$	11.0	$\begin{gathered} 29.2 \mathrm{~m} \times x \\ 11.0 \end{gathered}$	$\begin{aligned} & 29.0 \mathrm{~m} \times \\ & 11.0 \end{aligned}$	$\begin{gathered} 28.7 \mathrm{~m} \times \\ 11.0 \end{gathered}$	$\begin{gathered} 28.5 \mathrm{~m} \times x \\ 11.0 \end{gathered}$	${ }_{\substack{28.41 .0 \\ 11.0}}$	$\begin{gathered} 28.2 \mathrm{~m} \times \\ 11.0 \end{gathered}$	11.0	10.9	10.8	10.7	10.5	10.3	10.2	8.9
30.0					$\begin{gathered} 28.9 \mathrm{~m} \times \\ \hline 11.0 \\ \hline \end{gathered}$	10.6	10.5	10.3	10.2	10.1	10.0	9.9	9.7	9.6	9.5	9.3	9.1	9.0	8.0
32.0						$\begin{gathered} 31.5 \mathrm{~m} \times \\ 9.8 \\ \hline \end{gathered}$	9.5	9.3	9.2	9.1	9.0	8.9	8.7	8.6	8.5	8.3	8.1	7.9	7.1
34.0							8.6	8.4	8.3	8.2	8.1	8.0	7.8	7.7	7.6	7.4	7.2	6.9	6.4
36.0								7.6	7.5	7.4	7.3	7.2	7.0	6.9	6.8	6.6	6.4	6.0	5.7
38.0								$\begin{gathered} 36.6 \mathrm{~m} \times \\ 7.4 \end{gathered}$	6.8	6.7	6.6	6.5	6.3	6.2	6.1	5.9	5.7	5.2	5.0
40.0									$\begin{gathered} 39.2 \mathrm{~m} \times \\ 6.4 \end{gathered}$	6.1	6.0	5.9	5.7	5.6	5.5	5.3	5.1	4.5	4.3
42.0										$\begin{gathered} 41.8 \mathrm{~m} \times \\ 5.6 \\ \hline \end{gathered}$	5.5	5.4	5.2	5.1	5.0	4.8	4.6	3.9	3.7
44.0											5.0	4.9	4.7	4.6	4.5	4.3	4.1	3.5	3.2
46.0											$\begin{gathered} 44.4 \mathrm{mx} \\ \hline 4.9 \\ \hline \end{gathered}$	4.4	4.2	4.1	4.0	3.8	3.6	3.0	2.7
48.0												$\begin{gathered} \text { 47.0m } \mathrm{x} \\ 4.2 \end{gathered}$	3.8	3.7	3.6	3.4	3.1	2.5	2.2
50.0													$\begin{array}{r} 49.6 \mathrm{~m} \times \\ \hline \end{array}$	3.3	3.2	3.0	2.7	2.1	1.7
52.0														3.0	2.9	2.7	2.2	1.7	1.3
54.0														$\begin{gathered} 52.2 \mathrm{~m} x \\ 2.9 \\ \hline \end{gathered}$	2.6	2.4	1.8	1.3	

Notes

1. Above rated loads are based on firm level ground, within 78% of tipping load at any point 360° throughout
and with front stability of 1.15 or more. Working ront stability of 1.15 or more of the load.
2. When the main hook block is installed, the lifting loads of jib must be reduced by the weight of hook block (main and jib) and other lifting devices.
120 ton hook block $\cdots 1.60$ ton $\quad 60$ ton hook block $\cdots 1.15$ ton
50ton hook block $\cdots 0.95$ ton
1 ton hook block $\cdots 0.40$ ton

Jib rated lifting loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Boom length (m) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Jib length (m) \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Working radius (m) \& 10° \& 30°

\hline 9.0 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 10.0 \& ${ }_{\substack{11.3 m \times \\ 11.0}}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 12.0 \& 11.0 \& \& $$
\begin{gathered}
13.4 \mathrm{~m} \times x \\
10.0
\end{gathered}
$$ \& \& \& \& $$
\begin{gathered}
13.4 \mathrm{~m} \times \\
\\
\hline 11.0
\end{gathered}
$$ \& \& \& \& \& \& \& \& \& \& \&

\hline 14.0 \& 11.0 \& ${ }^{15.0 \mathrm{~m} \times} \times$ \& 10.0 \& \& ${ }_{\text {c }}^{14.9 \mathrm{~S} \times}$ \& \& 11.0 \& \& $15.5 \mathrm{~m} \times$
10.0 \& \& \& \& \& \& \& \& \&

\hline 16.0 \& 11.0 \& 8.5 \& 10.0 \& \& 5.5 \& \& 11.0 \& ${ }^{17.1} 8.5 \times$ \& 10.0 \& \& ${ }^{17.0 \mathrm{~m} \times}$ \& \& ${ }^{17.0 \mathrm{~m} \times} \times$ \& \& \& \& \&

\hline 18.0 \& 11.0 \& 8.5 \& 10.0 \& ${ }^{18.9 \mathrm{~m} \times}$ \& 5.5 \& \& 11.0 \& 8.5 \& 10.0 \& \& 5.5 \& \& 11.0 \& \& $19.1 \mathrm{~m} \times$
10.0

c \& \& \&

\hline 20.0 \& 11.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& \& 11.0 \& 8.5 \& 10.0 \& ${ }_{\substack{21.0 \mathrm{~m} \times \\ 6.5}}$ \& 5.5 \& \& 11.0 \& ${ }^{20.8 \mathrm{~m} \times} \times$ \& 10.0 \& \& ${ }_{\text {che }}^{20.7 \mathrm{~F} \times}$ \&

\hline 22.0 \& 11.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& ${ }_{4.5}^{22.3 m \times}$ \& 11.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& \& 11.0 \& 8.5 \& 10.0 \& \& 5.5 \&

\hline 24.0 \& 11.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& 4.5 \& 11.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& ${ }_{4}^{24.5 \mathrm{~S} \times}$ \& 11.0 \& 8.5 \& 10.0 \& ${ }_{6.5}^{24.6 \mathrm{~m} \times}$ \& 5.5 \&

\hline 26.0 \& 11.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& 4.5 \& 11.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& 4.5 \& 11.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \&

\hline 28.0 \& 11.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& 4.5 \& ${ }^{29.811 .0} \times$ \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& 4.5 \& ${ }_{11}^{28.3 \mathrm{~m} \times}$ \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& 4.5

\hline 30.0 \& ${ }_{\text {c }}^{30.71 .0} \times$ \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& 4.5 \& 10.9 \& 8.5 \& ${ }^{31.7 \mathrm{~m} \times} \mathrm{C}$ \& 6.5 \& 5.5 \& 4.5 \& 10.0 \& 8.5 \& 10.0 \& 6.5 \& 5.5 \& 4.5

\hline 32.0 \& 10.4 \& 8.5 \& ${ }_{\substack{32.8 m \times \\ 10.0}}$ \& 6.5 \& 5.5 \& 4.5 \& 9.9 \& 8.5 \& 9.9 \& 6.5 \& 5.5 \& 4.5 \& 9.0 \& ${ }^{33.1} 8.5 \times$ \& 9.0 \& 6.5 \& 5.5 \& 4.5

\hline 34.0 \& 9.5 \& 8.5 \& 9.5 \& 6.5 \& 5.5 \& 4.5 \& 9.0 \& ${ }_{8}^{35.5 \mathrm{~m} \times}$ \& 9.0 \& 6.5 \& 5.5 \& 4.5 \& 8.1 \& 8.1 \& 8.1 \& 6.5 \& 5.5 \& 4.5

\hline 36.0 \& 8.7 \& ${ }^{36.6 \mathrm{~m} \times}$ \& 8.7 \& 6.5 \& 5.5 \& 4.5 \& 8.2 \& 8.2 \& 8.2 \& 6.5 \& 5.5 \& 4.5 \& 7.3 \& 7.3 \& 7.3 \& 6.5 \& 5.5 \& 4.5

\hline 38.0 \& 8.0 \& 8.0 \& 8.0 \& 6.5 \& 5.5 \& 4.5 \& 7.5 \& 7.5 \& 7.5 \& 6.5 \& 5.5 \& 4.5 \& 6.6 \& 6.6 \& 6.6 \& ${ }^{38.4 \mathrm{~m} \times \mathrm{x}}$ \& 5.5 \& 4.5

\hline 40.0 \& 7.4 \& 7.4 \& 7.4 \& 6.5 \& 5.5 \& 4.5 \& 6.9 \& 6.9 \& 6.9 \& ${ }_{\substack{41.5 m \times \\ 6.5}}$ \& 5.5 \& 4.5 \& 6.0 \& 6.0 \& 6.0 \& 6.0 \& 5.5 \& 4.5

\hline 42.0 \& ${ }_{\text {40, }}^{4.1 \mathrm{4} \times}$ \& ${ }_{\substack{\text { 41.1m } \\ 7.1}}$ \& 6.9 \& ${ }_{4}^{43.5 \mathrm{~m} \times}$ \& 5.5 \& 4.5 \& 6.4 \& 6.4 \& 6.4 \& 6.4 \& 5.5 \& 4.5 \& 5.5 \& 5.5 \& 5.5 \& 5.5 \& 5.5 \& 4.5

\hline 44.0 \& \& \& 6.4 \& 6.4 \& 5.5 \& 4.5 \& 5.9 \& 5.9 \& 5.9 \& 5.9 \& ${ }_{\substack{45.6 m \times}}^{5.5}$ \& 4.5 \& 5.0 \& 5.0 \& 5.0 \& 5.0 \& 5.0 \& 4.5

\hline 46.0 \& \& \& ${ }_{6.0}^{45.8 \mathrm{~m} \times}$ \& 5.9 \& 5.5 \& 4.5 \& 5.4 \& 5.4 \& 5.4 \& 5.4 \& 5.4 \& 4.5 \& 4.5 \& 4.5 \& 4.5 \& 4.5 \& 4.5 \& ${ }_{4.5}^{46.1 \mathrm{~m} \times}$

\hline 48.0 \& \& \& \& ${ }_{\substack{47.1 m \times \\ 5.7}}^{\text {chem }}$ \& 5.5 \& 4.5 \& 5.0 \& 5.0 \& 5.0 \& 5.0 \& 5.0 \& 4.5 \& 4.1 \& 4.1 \& 4.1 \& 4.1 \& 4.1 \& 4.1

\hline 50.0 \& \& \& \& \& 5.1 \& 4.5 \& 4.6 \& 4.6 \& 4.6 \& 4.6 \& 4.6 \& ${ }_{4}^{50.7 .5} \times$ \& 3.7 \& 3.7 \& 3.7 \& 3.7 \& 3.7 \& 3.7

\hline 52.0 \& \& \& \& \& ${ }_{4.9}^{51.2 m \times}$ \& 4.5 \& ${ }_{40.5 \mathrm{~S} \times}$ \& ${ }_{4}^{51.5 \mathrm{~m} \times}$ \& 4.3 \& 4.3 \& 4.3 \& 4.3 \& 3.4 \& 3.4 \& 3.4 \& 3.4 \& 3.4 \& 3.4

\hline 54.0 \& \& \& \& \& \& ${ }^{53.1 \mathrm{~m} \times}$. \& \& \& 4.0 \& 4.0 \& 4.0 \& 4.0 \& 3.1 \& 3.1 \& 3.1 \& 3.1 \& 3.1 \& 3.1

\hline 56.0 \& \& \& \& \& \& \& \& \& 3.6 \& 3.6 \& 3.6 \& 3.6 \& 2.7 \& 2.7 \& 2.7 \& 2.7 \& 2.7 \& 2.7

\hline 58.0 \& \& \& \& \& \& \& \& \& ${ }_{\text {c }}^{56.2 \mathrm{~m} \times}$ \& ${ }_{\text {5 }}^{57.4} \times$ \& 3.3 \& 3.3 \& 2.4 \& 2.4 \& 2.4 \& 2.4 \& 2.4 \& 2.4

\hline 60.0 \& \& \& \& \& \& \& \& \& \& \& 3.0 \& 3.0 \& 2.1 \& 2.1 \& 2.1 \& 2.1 \& 2.1 \& 2.1

\hline
\end{tabular}

[^0] of the load.

Self dismantling method convenient transportation

Attachments, counterweights and crawler frames can be dismantled to lighten the weight, shorten the width and lower the height of the base machine for convenient transportation.

Optional Equipment

Moment limiter (overload prevention)
Warning at 90\% of rated load
Warning at optionally set boom angle
Shockless stop, load hoist and boom hoist or lowering at limited condition
Insert boom (w/pendant cable) $3 \mathrm{~m}, 6 \mathrm{~m}, 9 \mathrm{~m}$
13 m basic jib, $3 \mathrm{~m}, 6 \mathrm{~m}$ insert (w/pendant rope)
Auxiliary jib
60 ton, 50 ton, and 30 ton hook block
11 ton hook block for jib
Combustion type heater

Air conditioner

Wierless phone
Yellow rotary light
Boom point clearance light
Bullhorn
Catwalk
Catwalk (w/handrail)
Offlimit fence
Electrical type level indicator
Safety guard on boom
Reeving winch
Hydraulic type tagline

Rope guide roller on boom (additional) Drum roller
Name plate (both side of outer boom and cab)
Fire extinguisher
Flash light for inspection
Hoist drum mirror
Boom foot pin cylinder
Fulcrum plate for rising of attachment Monitor TV (watching rear left and drum) Monitor TV (watching lifting load)
Large size tool box with caster
Sling wire for disassembling and assembly

ORour powerful, independently driven drum winches mounted on dual in-line shafts
Main and auxiliary drums are located on the left side on front and rear shafts while jib hoist and boom hoist drums are on the right. Each drum is individually driven via a reduction unit from a variable displacement axial piston type hydraulic motor, delivering powerful winch performance.
(Front right drum is optional on applications other than the luffing jib crane.)

Rower-efficient fully controlled hydraulic system

Two variable displacement pumps and one gear pump incorporated into the engine provide the most effective application of engine output. Hydraulic flow and pressure are automatically regulated within maximum engine output, delivering high flow and low pressure for lighter loads, low flow and high pressure under heavy loading.

Ratigue-free brake operation
Hydraulically assisted main and auxiliary braking systems allow easy, delicate half-brake control.

Moment limiter (Option)

The moment limiter has a graphic display with interactive screen. A panel switch lets the operator select from three display modes: load status diagram, rated lifting curve, and rated lifting capacity table.
When the actual load reaches 90% of rated lifting capacity, an intermittent warning buzzer sounds. At 100% of rated capacity, the buzzer sounds continuously,ceasing when load is hoisted or when boom is lowered. The moment limiter uses shockless control valves to slow and then stop the movement of boom or tower jib as they reach minimum or maximum operating angles. Boom angle limitations can be set by the operator, and the display blinks as a warning when these limits are reached.

Mode selector switch installed in control lever
Control levers, pedals and switches are designed for easy operation. One-touch winch mode selector switches (foot/auto braking) are installed in the grips of main and auxiliary drum control levers. And an engine throttle control is built into the grip of the swing control lever, for fingertip command over engine speed.

- (V)ltra-low-speed control for precision work

Hydraulic pump delivery volume is controlled in conjunction with engine speed, supplemented by an independent swash-plate angle control dial. Together, these devices provide easy, accurate, seat-side control over delivery volume, for precise inching work.

- QK monitor

The OK monitor allows the operator to assess mechanical operating conditions at a glance, without leaving the seat. It includes bar graphs for water temperature, engine oil pressure and hydraulic oil temperature gauges, along with battery charging and air cleaner clogging information.

ORuel-efficient automatic engine deceleration system
With the Auto-Decel selector engaged, the system senses hydraulic pressure, reducing engine speed to idle speed when the crane is inactive.

Stacking type counterweights

Counterweights are stacked on the tail of the turntable, for excellent stability, efficient transport, and safe and easy assembly/disassembly. Weights-seven blocks of up to 14.7 ton-- are secured directly to the turntable with pins and wedges.

Specifications are subject to change without notice due to technical improvements or modifications. Distributed by

[^0]: Notes
 Above rated loads are based on firm level ground, within 78% of tipping load at any point 360° throughout and with front stability of 1.15 or more.
 Working radius is horizontal distance fro

